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ABSTRACT

The infrared divergences of renormalizable theories with
coupled massless fields (in particular the Yang-Mills theory) are
shown to cancel for transition probabilities corresponding to
finite energy resolution detectors, just as in quantum electro-
dynamics. This result is established through lowest non-trivial
order in perturbation theory for the detection of massive muons
in a QED theory containing massless electrons or the detection of

massive quarks in a Yang-Mills theory.
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In quantum electrodynamlcs, physically sensible transition
probabilities are infrared finite to 2ll orders ina. It has been

Shown by many peoplel’2

beginning with Bloch and Nordsleck that the
infrared divergences assoclated with virtual corrections are can-
celled by corresponding divergences in the emission of undetected
photons whose total enefgy is less than the energy resolution AE
of the detector. A central question in the study of Yang-Mills
theories is whether an analog to the Bloch-Nordsieck program can be
carried out. Our work suggests fThat thls is possible for any re-
normalizable theory containing coupled massless flelds along with
massive ones. This result should help to sharpen questions about

the confinement mechanism in gauge theories. In particular, it

has been speculated that conflnement 1s connected to the existence

of mass singularities in perturbaticn theqrv. However, to lowest
non-trivial order we have proven that there are no singularities in
exnerimentally accessible transition nrobabilities. We confecture that

this is true to anyv finite order.
We begin by reviewing some known features of gquantum electro-

dynamics in the limit me+0 since this model contalns coupled mass-
less flelds, a feature shared by the Yang-Mills theory. Even with
me=0, certain transition probablllties remain free of infrared
singularities3’u. We then proceed to the Bloch-Nordsieck problem
for two different theories involving massive flelds in addition to
coupled massless ones. The first (model 1) is quantum electro-
dynamics with a massive muoﬁ and a massless electron. The second
{model 2) is the Yang-Mills theory with massive quarks coupled to
the massless gauge fields. It is useful to study the Abellan
model first since 1ts infrared structure in perturbation theory 1s
similar to the Yang-mills theory and yet it avoids some of the

non-Abelian complexity. In elther theory, the mass rencrmalization

of the fermions 1s performed on the mass-shell and the resulting
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renormalized fermion mass y 1s gauge independent. However in any
theory with coupled massless flelds 1t 1s necessary to define the
coupling constantraway from mass-shell to aveid introducing spurious
infrared singularitiess. For both models, we explicltly analyze
production by an external local current Ju(x) followed by the de-
fection of a massive fermion with energy fésolution AE. In the
Abelian model, Ju(x)=ﬁﬁx)yuu(x), where u(x) i1s the muon fleld and
the detector triggers on muon number. For the Yang-Mills model,
Ju(x)=f§i(x)7uqi(x), a group (color) singlet. The ouark detector is -
color-blind, triggering on, say, electric charege.

If the 1limit me*o 1s taken in ordinary electrodynamics, a single
electron state becomes degenerate in energy with a state consisting
of an electron and any number of parallel moving photons and electron-
positron pairs. Summatlon over these degenerate states is necessary
for infrared finiteness. Conslder,for example,thé production of
electrons, positrons and photons by an external current Ju(x)ﬁFe(x)yuwe(x).
Any Feynman diagram contributing to fdux eiq'x<olT(ju(x)Jv(0))|0> is
finite in this limit since the external momentum provides an infrared
cutoffs. Thus the sum of contributions to the total production cross
sectlon corresponding to the different cuts of each such dlagram
will be infrared finite in the 1imit me+0. Note that a partial cross
section corresponding to the detection of a single massless electron
with energy between E and E+AE 1s impossible to measure and is in
fact logarithmically divergent'.

The extension of this result to the Yaneg-Mllls theorv has been
checked through low orders of perturbatidn thecrya. The flniteness of
the total cross section can be shown with massless or massive ouarks
counled to the gluons. However, with massive ouarks, the auestion of

the finiteness of a vartial cross section with finite enerev resolution

quark detectors ( a Bloch-llordsieck result) 1s less easSilv answered.



b . FERMILAB-Pub-76/16-THY

We consider this problem for both models 1 and 2. The compu-
tation is organized by groupling together the different unitarity cuts

of each diagram contributing to Huv(q)=fdu

x e2d" X 3 (x)3,(0) [0>.
The phase space integral over the massive fermion 1s however restricted
by the detector kinematics. The object to be computed 1s the cross
section for the inclusive detectlion of a méssive fermion. We
normalize by the Born cross sectlion and define the dimensionless
transition probability RAE(E/M, AE/M, u/M, m/M, g(M)) where E represents
the energies (center of mass, fermion energy), AE 1s the energy resolu-
tiong, 4 1s the heavy fermion mass, m represents some infrared cutoff
and g(M) is the renormalized coupling constant”., In the Abelian model
the infrared cutoff m is the electron mass. For the Yang-Mills theory,
the infrared cutoff 1s best provided by dimensional continuationlo. |
In the Abelian model Huv(q) coqtains only ordinary quantum

electrodynamics graphs at the one and two loop levels so that RA is

E
~clearly finite. On the three loop level, the same is true of all

graphs except the two shown in Fig. 1. To show that all the cuts of

either Fig. la or Fig. 1b sum to a finite contributlion to R it is

AE?
convenient to use a dilspersive representation for the internal photon

propagator rather than explié¢itly considering each cut. Apart from a

zeroth order longltudinal piece, the complete photon propagator is
k k

(g - B Vy 1 d(ke), where d(ka) satisfles the dispersion relation
uv 2 2
k kK"+ie
1 2 2 2 1l 1 2 2
d(k"/M°, m" /M7, g(M)) = —=— d(0, m"/M%, g(M))
k“+ie ’ ’ kK +ie¢ ’ ’

© .2 2

+f dA® (L")

Y kS-AS+ie

Consider the sum of the cuts of Fig. la with the muon phase space

. (1)

restricted by the detector kinematics (AE cuts). Using Eq. 1

expanded to second order,
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Hw(la) = a{@ (0, n?/M?, () x Z.“'"“
AE cuts ' AE cuts
R (2)
+ ! ax? 11(2)(1 ) x Z“'“"

AE cuts -
Since the sum of the AE cuts of the two loop graph is finite in the region

near l=06 , the possibly infrared divergent part in Eg. 2 1s propogtional

: 2
to a'®(0,n?/u%,g(0))+/, aA’1?G3). However, since atiP , n/?,

g(M)) 1is renormalized at k2=-M2, the limit m+0 exists in each order.
Thus from Eq. 1, d(z)(o,mz/Mz,g(M))+f.dl2n(2)(A2) is finite in the
1imit m+0, Fig. 1b can be dealt wlith similarly and therefore
RAE(E/M’ AE/M, u/M, 0, g(M)) exists to this order. In next order

(4 loops in Huv(q))’ subgraphs appear with four or more external
photon legs and thls dispersive method has to be supplemented.

The extenslon to the Yang-Mills theory is straightforward The

-first class of three loop graphs to consider are those without gluon‘
self couplings or Fadeev-Popov loops. Each of these as well as the
one and two loop graphs is electrodynamic-like apart from group theory
factors. However, since the detector 1s color blind, the color sum
can be done in each graph before making the wvarious cuts. Then
since the sum of the AE cuts of each such graph in electrodynamics
is finite, the same will be true herell.

The next class contains the graphs with gluon propagator cor-
rectlions to the two loop graphs. They can be dealt with as in the
Abelian model using a dispersive representation for the gluon propa-
gator. The sum of the one loop corrections to the gluon propagator
{gluon loop, Fadeev-Popov ghost loop and tadpole) 1s proportional
tO'gz(M)i% log -kz/Mz. This expression can be obtained by dimen-

2

sional continuation and subtraction at k2=—M . A dispersive repre-

sentatlon for the gluon propagator to this or any order can be

developed by starting with a contour in the complex k2 plane which
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comes in from += below the real axis, clrcles around the origin and

goes out to +* above the real axils, The radius & of the small circle
around the origin plays the role of the electron mass in the Abellan
model and the contribution from the small circle takes the form of the
first term in Eq. 1. The sum of this piece and the other 1s finite
as §+0 and the analysis of Euv(q) then goes as in the Abelian case,
There remain the two dlagrams of Fié. 2. We sketch the proof
of infrared finiteness for the sum of the cuts of diagram 2b (the
Mercedes-Benz diagram). There are five distinect cut diagrams plus
thelr complex conjugates and in each case, the infrared divergences
come from various regions of the k and r integrations. It is best
to first perform the ko and rq integrations and then examine each
term for divergences in the k and r integrations. The infrared
divergences can be regulated by contlinuation from three to n-l
spatlal dimensions. For the cut diggramé with two real gluons,
the energy ihtegrations are trivial. For the other cut dilagrams,
elther one or both of the kg and ry Integrations must be done
explicitly by closing the contour in, say, the lpwer half plane and
enumerating the poles in that plane,

2

Divergences can arise from the following regions of ﬁ, T space,

1) K and T+ 0, 2) K > 0 with T fixed, 3) r » 0 with k fixed,

+ w¥

)
4) K + ¥ > 0 with k - ¥ fixed, 5) ¥ becoming parallel to T with both
vectors non-zero. The last kind of divergence arises only in
theories with coupled massless filelds. Each of ﬁhese infrared
divergences then cancel amdng the various terms independently of
the quark phase space integration. The treatment of diagram 2a
1s simpler since the contribution from the region ku and ru + 0
vanishes due to the total antisymmetry of the trigluon vertex ten-
sor, We conclude that RaE is infrared finite to this order in the
Yang-Mills theory.
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The analvsis outlined here can be applled to scatterine nroblems
as well. The scattering of a color averaged auark.beam bv an
external color singlet fleld followed bv color blind detection 1=
closely analogous to the production nrocess discussed above. We
have shown 1t to be infrared finite to order gu(M) (two loon cor-
rections to the elastiec amplitude and ur to two undetected massless
guanta in the final state). It shouid be‘vossible to treat other
scattering oroblems involwving color singlet sources and detectors
in the same waylz.

We conclude wilth some comments to help put thils work in persnective,

1. Our result, being perturbative, has nothing to do with re-
normalization group considerations such as asvmptotic freedom. RAE
is infrared finite in rerturbation theorv for both the asvmototically
free Yang-Mills theorv and the non—ésvmntoticallv free Abelian model.
However, the behavior of RAE to all orders 1in g(M) 1s surelyv acuite
different in the two cases. One auestion related to this all-orders
.behavior Is the devendence of RAE on the energv resolution AE. In
ordinary acuantum electrodvnamics, the factbrs of (loe AE)n which
avpear in n'th order can be extracted into a multiplicative exponential
factor which then vanishes as a power of AE when AE+0. Does something
like thils hapven with coupled massless fields? Tt is probablv not too
difficult to answer this acuestion in the Abelian model (model 1)
because it becomes weaklv coupled in the infrared limit. In the Yane-
Mills theory, on the other hand, this is a strone coupnling problem.

2. To. summarize, our result is a statement about the ﬁehavior
of RAE order by order in g(M). Since the exact infrared behavior of

the Green's functions is unknown in the Yanem-Mills theorv, RAE has not

been expressed 1n terms of an on-shell coupnling constant. Thus, for
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example, there is no immediate classical correspondence as in
oguantum electrodvnamics.

3. In two recént navers, Cornwall and Tlktonoules have
suggested that the Bleoch-Nordsieck orogram could fail for Yane-Mills
theories resultine in a zero oroduction probabllitv bv a color singlet
source13: This spreculation 1s based on a-summation of leading
logarithmic corrections to each exclusive emission process. Thus,

there is no a prioricontradiction with our result which is an order

by order statement.
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Flgure Captions _
Flg. 1. Abellan model three loop contributlions to nuv(Q)’ con-
talning coupled massless flelds.

Fig. 2. Yang-Mills three loop contributions to I (q).
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